
Infix to Postfix Conversion

Computer Algorithm

20072605 Tae-Wan, Kim

Intelligent Multimedia Lab.

Dept. of Computer & Communication Engineering

POSTECH, South Korea

taey16@postech.ac.kr

April 28, 2007

Infix to Postfix Conversion - Algorithm

1. Algebraic Expression Evaluation

1.1 Problem

The main application of stack and binary expression tree is a algebraic expression

evaluation. This is a classic and important problem. What makes this problem particularly

interesting is that the core of the solution requires two stacks, each holding different types of

data or a simple parsing tree to evaluate an expression. Then, why we translate infix

notation into postfix notation? The reason is that infix is the format normally used in

representing an algebraic expression by human. But postfix interpreted by

machine is a format that places an operator directly after two operands without

ambiguity. we ,therefore, should develop a java software application that takes an algebraic

expression as an input string. An example of such an algebraic expression is (1 + 2) * 2 -

13̂ % 2. After numeric values are assigned to each operand(values for 1,2,2,1,3,2), the

algorithm must compute the value of the algebraic expression.

Input : A string representing an algebraic expression involving n operands and an

n-tuple representing the values for the operands(i.e., numeric values for each operand).

The arithmetic operations allowed in an expression are addition, subtraction,

multiplication and division as well as exponentiation and modulus. Parentheses ,of

course, should be evaluated.

Output : The postfix notation w.r.t. an expression and the value of the expression for

the particular n-tuple of input operand values.

1.2 Solution of Problem using stack

1.2.1 Conversion from infix to postfix

Let us think about the algorithm to convert the infix string ”a*b+c” to postfix format. The

symbol a is appended to the postfix string. The operator symbol ”*” is pushed onto the

operator stack. The symbol b is appended to the postfix string. The operator symbol ”*”

representing top is compared in precedence to the newly read operator symbol ”+”. Since

the ”*” is not of lower or equal precedence, it it popped from the stack and appended to the

postfix string(which is now ab*). The ”+” is pushed onto the operator stack. The final

symbol c is appended to the postfix string(since it is an operand symbol). With all symbols

read, the operator stack is popped(until empty) and in this case only the operator symbols

”+” is appended to the postfix string producing the final result ab*c+.

1 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

Postfix string : ab
*

Top of stack

Postfix string : ab*
+

Top of stack

Postfix string : ab*c
+

Top of stack

Postfix string : ab*c+

Top of stack

Figure 1: Use of the operator stack in converting from infix to postfix

The following algorithm shows a brief way to transform infix into postfix.

1. Tokenize the infix String into char \\

2. Loop for the size of infix

if the current character in infix is a digit, copy it to the

next element of postfix \\

if the current character in infix is a left parenthesis, push it

on the stack.

if the current character in infix is an operator

pop operators at the top of the stack while they have equal

or higher precedence than the current operator. and insert

the popped operators in posfix

push the current character in infix on the stack.

if the current character in infix is a right parenthesis

pop operators from the top of the stadck and insert them in

postfix until a left parenthesis is at the top of the stack.

pop(and discard) the left parenthesis from the stack

1.2.2 Evaluation of postfix expression

The following algorithm shows a brief way to evaluate postfix string

1. Tokenize the postfix string into char

2. Loop for the size of infix

if the current character is a digit

2 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

push its integer value on the stack

otherwise, if the current character is an operator

pop the two top elements of the stack into variables x and y.

calculate y operator x.

push the result of the calculation on the stack

1.2.3 Class diagram

Following class diagram shows our code very clearly.

Figure 2: Class diagram for InfixToPostfix

Figure 3: Class diagram for stack

3 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

1.2.3 Result

Input infix expression 2*3

Postfix : 23*

Value : 6

Input infix expression 4^(1+1)

Postfix : 411+^

Value : 16

Input infix expression 3+7*1%2

Postfix : 3712%*+

Value : 10

Input infix expression 6%8+4^(1+2)

Postfix : 68%412+^+

Value : 70

Input infix expression 7%6+2^(1+1)

Postfix : 76%211+^+

Value : 5

Input infix expression 2^(2+2)/(1-0)

Postfix : 222+^10-/

Value : 16

Input infix expression 9%3+6^1-3+(1-1)

Postfix : 93%61^3-11-++

Value : 3

Input infix expression (1+2)*3-4+1*2^(6/(2+1))

Postfix : 12+3*4-12621+/^*+

Value : 9

Input infix expression 1+(2+(3+(4+(5+(6^(1+2))))))

Postfix : 12345612+^+++++

Value : 231

Input infix expression 4-1%8+6%(3+1)*2+(4*(4+(2-5^2)))

Postfix : 418%631+%2*44252^-+*++-

Value : 75

4 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

1.3 Solution of Problem using binary tree

1.3.1 Building Expression Tree

Logic for buildExpressionTree is as follows. We iterate from left to right over the characters

in postfixString. Each character in postfixString is assigned to ch. Character ch is either an

operand or an operator as verified by supporting internal queries ch ≤ ”9” && ch ≥ ”0”.

Operands are encapsulated in instances of SearchTreeNode and pushed onto the stack s.

Left and right subtrees of operand nodes are null. Operators are encapsulated in nodes with

right and subtrees set sequentially to the top two nodes popped from stack s. This

algorithm requires that postfixString be a valid postfix expression with no blank spaces.

Successful completion of the algorithm leaves only a reference to the root node of a valid

expression tree on stack s. Following figure shows how to build expression tree.

Figure 4: Converting ”(1+2)*3” to 12+3x using binary expression tree and stack

1.3.2 Postorder Traversal

Following pseudo-code gives a chance to understanding the postorder traversal.

Algorithm postorder(Tree t)

if t has a left child u then

postorder(u);

if t has a right child w then

postorder(w);

perform the "visit" action for node t

5 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

Fig5. shows exact order of postorder traversal

Figure 5: Postorder traversal on expression tree

1.3.3 Expression Tree Evaluation

Algorithm evaluateExpression, given in fig.5, evaluates the expression associated with the

subtree rooted at a node v of an arithmetic expression tree T by performing a postorder

traversal of T starting at v. In this case, the ”visit” action consists of performing a single

arithmetic operation. Note that we use the fact that an arithmetic expression tree is a

proper binary tree.

Algorithm evaluateExpression(T,v)

if (root.isInternal())

Character op = (Character)root.contents;

int x = evaluateExpression(root.left);

int y = evaluateExpression(root.right);

return x o y

else

return the value stored at v

1.3.3 Class Diagram

Following class diagram shows our code very clearly.

6 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

Figure 6: Class diagram for InfixToPostfix using binary expression tree

Figure 7: Class diagram for binary expression tree

7 Intelligent Multimedia Lab.
taey16@postech.ac.kr

Infix to Postfix Conversion - Algorithm

1.4 Result

Input infix expression 5^8-5

5 8 ^ 5 -

Value : 390620

Input infix expression 6+5/5+9

6 5 5 / 9 + +

Value : 16

Input infix expression (6+5)/(5+9)

6 5 + 5 9 + /

Value : 0

Input infix expression 5%(6-1)^5

5 6 1 - % 5 ^

Value : 0

Input infix expression 5%6-1^5

5 6 % 1 5 ^ -

Value : 4

Input infix expression 8/(2^2)

8 2 2 ^ /

Value : 2

Input infix expression (5/2)^2

5 2 / 2 ^

Value : 4

Input infix expression 5+6^3+(9-1)

5 6 3 ^ 9 1 - + +

Value : 229

Input infix expression 1+(2-(3+(4-(5+(6-7)))))

1 2 3 4 5 6 7 - + - + - +

Value : 0

Input infix expression 1+2-3+4-5+6-7+8-9+0

1 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - 0 +

Value : -3

8 Intelligent Multimedia Lab.
taey16@postech.ac.kr

